CMID
Canonical Metric Identifier System (CMID)
A Unified Tagging, Discovery, and Assurance Layer for Policies, Metrics, and Evidence
1. Purpose & Scope
The Canonical Metric Identifier System (CMID) is the universal standard for labeling, indexing, referencing, and verifying sustainability metrics across:
- Policies
- Procedures
- Forms (FOGE)
- Signals (SSSR)
- Micro-Engines (MICE)
- Reports & XBRL mappings
- Agent workflows (ZARA, ZAAM)
- Audit & evidence systems (ALTD, DAL, Assurance Cloud)
CMIDs ensure that every reference to a metric — in policy text, regulatory mappings, form fields, signals, or narrative sections — is traceable to a single authoritative definition.
CMIDs solve 4 systemic problems:
| Problem | Solved By. |
|---|---|
| Inconsistent metric definitions across departments & policies | CMID → unified version in SSSR/ZAR |
| Hard for verifiers/auditors to locate a metric in ZAYAZ | CMID → deep link routing |
| Manual updates when ESRS/GRI/TCFD changes | CMID → single point update |
| Lack of machine-readable tagging in documentation | CMID → Docusaurus → SSSR → ZAR pipeline |
CMIDs are the backbone enabling full automation, advanced search, and policy–metric interoperability.
⸻
2. CMID Structure & Naming Convention
Here you go — the fully updated Chapter 2 and Chapter 10 sections for the CMID specification, rewritten to match:
- the new canonical auto-generation rule
- the SSSR-integrated CMID model
- the Ask ZARA audit-evidence hooks
- the Search Index 2.0 ingestion logic
- the ZAYAZ Assurance Pipeline (COSE → RIF → AAE)
These can be pasted directly into your MDX chapter, replacing the earlier versions.
⸻
2. CMID Generation Model (Final Version)
2.1 Purpose
The Canonical Metric Identifier System (CMID) provides a stable, global, immutable identity for every measurable unit used inside the ZAYAZ Platform. CMIDs allow:
- unambiguous identification of metrics across all modules
- cross-engine coordination (COSE → FIRM → REFS → AAE → RIF)
- federated metric verification for auditors, authorities, and automated agents
- machine-resolution of metrics during inference, simulation, or validation
Every CMID is globally unique, deterministic, and computationally generated.
⸻
2.2 Relationship to the Smart Searchable Signal Registry (SSSR)
The SSSR is the authoritative source of metrics inside ZAYAZ.
Each row in the SSSR corresponds to:
- a single semantic metric
- a single data signal
- a single CMID, automatically derived from its registry position
This ensures the entire platform uses the same canonical metric identity for:
- emissions factors
- governance indicators
- supply chain metrics
- risk thresholds
- policy fields
- micro-engine outputs
- AI-generated enriched metrics
⸻
2.3 Canonical CMID Format
The CMID follows this strict schema:
CMID-ZARA-{ID padded to 5 digits}
Example mappings:
| internal id | signal_id | CMID. |
|---|---|---|
| 1 | sssr:countries.iso_cc_id | CMID-ZARA-00001 |
| 2 | sssr:countries.iso_3166_1_alpha_3 | CMID-ZARA-00002 |
| 14 | sssr:energy.electricity.mwh | CMID-ZARA-00014 |
| 432 | sssr:scope3.category1.upstream | CMID-ZARA-00432 |
This creates a one-to-one, deterministic mapping:
CMID = canonical identity
SSSR row = canonical source of truth
⸻
2.4 Automated CMID Generation in SSSR
CMIDs are generated and stored in Postgres: ´´´sql ALTER TABLE signal_registry ADD COLUMN cmid TEXT GENERATED ALWAYS AS ( 'CMID-ZARA-' || LPAD(id::text, 5, '0') ) STORED;
This ensures:
- no manual assignment
- no drift
- no missing CMIDs
- instant availability for search
- guaranteed uniqueness
CMIDs become first-class members of:
- verification workflows
- RIF risk processes
- COSE anomaly detection
- AAE reasoning traces
- ZARA query resolution
- TLX/PAL provenance chains
⸻
### 2.5 CMIDs in Policy Templates
Policy templates do not generate CMIDs.
They declare relationships to CMIDs via:
```yaml
cmids:
- CMID-ZARA-00001
- CMID-ZARA-00014
This model is intentional:
- metrics are anchored in SSSR
- policies reference metrics
- reasoning (AAE) and auditing (COSE/RIF) become deterministic
⸻
Chapter 2 Summary
- CMIDs are derived, not authored.
- SSSR is the single authoritative source.
- The entire platform synchronizes metric identity through CMID.
- Policies, engines, dashboards, verifiers, and AI agents all use CMIDs for consistency.
⸻
3. CMID Schema (ZAR Artifact Format)
Stored in the ZAR Canonical Identifier Architecture.
{
"cmid": "CMID.GHG.TOTAL.REDUCTION_PCT.v1",
"title": "Percentage Reduction in Total Greenhouse Gas Emissions",
"description": "Measures percentage reduction of combined Scope 1, 2, and 3 emissions relative to baseline year.",
"domains": ["ESG", "Climate", "GHG"],
"signal_ids": ["SIG.GHG.TOTAL", "SIG.GHG.BASELINE"],
"sssr_mapping": "SSSR.GHG.TOTAL.REDUCTION_PCT",
"xbrl_concepts": ["ESRS_E1.EmissionsReductionPercentage"],
"micro_engines": ["MEID_CALC02_v1", "MEID_VALI04_v1"],
"evidence_requirements": [
"baseline_inventory",
"current_inventory",
"methodology_document",
"verifier_statement"
],
"version": 1,
"status": "active"
}
⸻
4. SSSR Integration
The SSSR (Smart Searchable Signal Registry) stores metadata for every signal. CMID becomes a required column.
4.1. Updated SSSR Schema
{
"signal_id": "SIG.GHG.TOTAL.REDUCTION_PCT",
"name": "GHG Reduction Percentage (Scope 1+2+3)",
"type": "numeric_percentage",
"frameworks": ["CSRD", "ESRS", "GRI"],
"cmid": "CMID.GHG.TOTAL.REDUCTION_PCT.v1",
"tags": ["policy-linked", "climate", "critical", "assurable"],
"dependencies": ["SIG.GHG.TOTAL.CURRENT", "SIG.GHG.TOTAL.BASELINE"],
"valuation_engine": "MEID_CALC02_v1",
"validation_engine": "MEID_VALI04_v1"
}
4.2. Requirements
- Every SSSR signal MUST map to a CMID.
- Metrics without CMIDs CANNOT appear in policies.
- The SSSR → CMID link is used by:
- ZARA reasoning engine
- ZAAM assistants (Form Diagnostic, Verifier Concierge, Compliance Scout)
- XBRL/iXBRL export
- ALTD audit trails
- SEEL stakeholder mapping
⸻
5. ZAR Integration (Canonical Identifier Architecture)
ZAR stores authoritative metric definitions. SSSR stores operational signal mappings.
5.1. Binding Logic
ZAR.cmid → SSSR.signal.cmid → FOGE.field.cmid → ALTD.entry.cmid
This provides complete metric lineage across the platform.
5.2. ZAR → SSSR Sync Rules
- If ZAR updates a CMID version → SSSR auto-updates.
- Deprecations follow CMCB schema rules.
- CMID versioning follows semantic versioning:
- v1 → first stable definition
- v1.1 → minor metadata adjustment
- v2 → breaking change from ESRS/GRI updates
⸻
6. FOGE / Form Generator Integration
FOGE needs CMIDs to bind form fields to canonical metric logic.
6.1. Field Schema
{
"field_id": "FIELD.GHG.TOTAL.REDUCTION_PCT",
"label": "GHG Total Reduction (%)",
"cmid": "CMID.GHG.TOTAL.REDUCTION_PCT.v1",
"signal_id": "SIG.GHG.TOTAL.REDUCTION_PCT",
"required": true,
"micro_engine": "MEID_CALC02_v1"
}
6.2. Dynamic Behavior
- Form hints come from ZARA.
- Field-level help comes from ZAAM.
- Validation comes from DICE/DaVE.
- Assurance comes from VTE → Verifier workflows.
⸻
7. Integration With ZARA & ZAAM
ZARA uses CMIDs as reasoning anchors.
7.1. Example
Prompt:
“What’s missing from our Scope 3 disclosures?”
ZARA resolves:
CMID.GHG.SCOPE3.TOTAL.v1
↳ SSSR.GHG.S3.CATEGORIES (all 15 categories)
↳ Missing: SIG.GHG.S3.CAT4, SIG.GHG.S3.CAT9
7.2. ZAAM Agents
- Form Diagnostic Agent → preloads CMID → SSSR → help text
- Verifier Concierge → deep-links to CMIDs for each disclosure
- EcoWorld Academy Mentor → teaches the metric based on CMID
⸻
8 XBRL/iXBRL Binding
8.1. Mapping Table
{
"cmid": "CMID.GHG.TOTAL.REDUCTION_PCT.v1",
"xbrl_reference": {
"taxonomy": "EFRAG ESRS",
"concept": "ESRS_E1.EmissionsReductionPercentage",
"datatype": "xbrl:percentItemType",
"period_type": "duration"
}
}
8.2. Workflow
- Exporter reads CMID
- Maps to XBRL concept
- Checks SSSR signal values
- Runs validation engines
- Produces ESEF/iXBRL-ready file
⸻
9 ALTD Audit Trail Integration
Every metric-related action must store CMID.
9.1. Audit Log Example
{
"event": "metric_update",
"cmid": "CMID.GHG.TOTAL.REDUCTION_PCT.v1",
"signal_id": "SIG.GHG.TOTAL.REDUCTION_PCT",
"user_id": "usr-eco196xxx-0000023",
"timestamp": "2025-03-04T12:41:00Z",
"old_value": "12%",
"new_value": "14%",
"evidence_reference": "ECO-ATTACHMENT-12321"
}
⸻
10. Docusaurus Integration
10.1. CMID Badge Component
Create a component: /src/components/CMIDBadge.js
import * as React from 'react';
export default function CMIDBadge({ cmid }: { cmid: string }) {
return (
<span
style={{
padding: '4px 8px',
backgroundColor: 'var(--zyz-color-brand-tint, #E0F2FF)',
borderRadius: '6px',
fontSize: '0.8rem',
color: 'var(--zyz-color-brand-strong, #0369A1)',
border: '1px solid var(--zyz-color-border-subtle)',
marginLeft: '0.25rem',
}}
>
{cmid}
</span>
);
}
Expose it in MDXComponents.js:
import CMIDBadge from '@site/src/components/CMIDBadge';
export default {
...OriginalMDXComponents,
CMIDBadge,
};
You can now use:
<CMIDBadge cmid="CMID-ZARA-00001" />
⸻
10. CMIDs in the ZAYAZ Verification, Assurance & Evidence Pipeline
The CMID is the universal reference key that binds together:
- metric definitions
- policy fields
- calculation engines
- telemetry signals
- evidence sources
- auditor workflows
- AI reasoning traces
- lineage and provenance logs
This section describes how CMIDs propagate through the ZAYAZ Governance Stack.
10.0. CMID Badge Component
Create a component: /src/components/CMIDBadge.js
import * as React from 'react';
export default function CMIDBadge({ cmid }: { cmid: string }) {
return (
<span
style={{
padding: '4px 8px',
backgroundColor: 'var(--zyz-color-brand-tint, #E0F2FF)',
borderRadius: '6px',
fontSize: '0.8rem',
color: 'var(--zyz-color-brand-strong, #0369A1)',
border: '1px solid var(--zyz-color-border-subtle)',
marginLeft: '0.25rem',
}}
>
{cmid}
</span>
);
}
Expose it in MDXComponents.js:
import CMIDBadge from '@site/src/components/CMIDBadge';
export default {
...OriginalMDXComponents,
CMIDBadge,
};
We can now use:
<CMIDBadge cmid="CMID-ZARA-00001" />
Next to all metrics in the policies. Just link it to the right metric. ⸻
10.1 CMID → Evidence Linking
Every CMID automatically synthesizes:
10.1.1 Ask ZARA Audit View
A dedicated audit context:
/ask?cmid=CMID-ZARA-00014&mode=audit
This enables:
- auditor-focused responses
- deterministic grounding
- stricter hallucination controls
- traceable evidence pathways
- reference to all policies and calculations involving that CMID
Access is wrapped in:
<AudienceBlock audience={['external-auditor','external-verifier','external-authority']}>
<AuditEvidenceLink cmid="CMID-ZARA-00014" />
</AudienceBlock>
Only authorized audiences see the link.
⸻
10.2 CMIDs in Search Indexing
The indexer injects CMIDs into semantic search metadata.
Example search document:
{
"id": "doc:/policies/env/climate-change#metrics",
"slug": "/policies/env/climate-change",
"title": "Climate Change Policy",
"heading": "Metrics",
"content": "...",
"metadata": {
"hub": "policies",
"module": "env",
"cmid": ["CMID-ZARA-00001", "CMID-ZARA-00014"]
}
}
This enables ZARA to answer:
- “Which documents define CMID-ZARA-00432?”
- “Which policies reference CMID-ZARA-00114?”
- “Show me all evidence related to CMID-ZARA-00058.”
⸻
10.3 CMIDs in COSE (Compliance Surveillance Engine)
COSE uses CMIDs to:
- align anomaly detection with metric semantics
- identify regulatory thresholds linked to specific signals
- consolidate evidence trails from multiple sources
- power cross-framework compliance mapping (CSRD ↔ ESRS ↔ IPCC ↔ ISO)
CMIDs provide the anchoring identity that ensures the correct regulatory rule is applied to the correct metric.
⸻
10.4 CMIDs in RIF (Risk Intelligence Framework)
RIF uses CMIDs as dimension keys for:
- dynamic risk filters
- threshold retrieval
- sector-adjusted baselines
- overconfidence index detection
- fraud/irregularity signals
- probability-based noncompliance scoring
This transforms CMIDs into a risk-aware ontology entry.
⸻
10.5 CMIDs in AAE (Autonomous Assurance Engine)
AAE uses CMIDs to:
- fetch metric definitions
- build assurance chains
- provide step-by-step reasoning
- explain extrapolation or simulation behavior
- verify consistency between calculators and policy expectations
- produce transparent validation narratives for auditors
Every reasoning trace is anchored by CMID.
⸻
10.6 CMIDs in Lineage, Provenance & TLX → PAL
CMIDs feed directly into:
- TLX (Transparency Ledger Exchange)
- PAL (Planetary Assurance Ledger)
- DAL (Digital Assurance Ledger)
This ensures traceability:
- from input → calculation → evidence → reporting → verification → blockchain proof
A CMID-based lineage model is:
Input Source → Metric Signal → Calculation → Assurance → Disclosure → Ledger
Each hop is cryptographically resolvable.
⸻
Chapter 10 Summary
CMIDs are the connective tissue of the entire assurance ecosystem:
| Layer | Role of CMID |
|---|---|
| SSSR | canonical metric identity |
| Policies | semantic link to regulatory expectations |
| Engines | consistent computation across modules |
| COSE | compliance anomaly mapping |
| RIF | risk filters & sector adjustments |
| AAE | transparent reasoning & verification |
| TLX/PAL | end-to-end traceability & auditability |
CMIDs turn ZAYAZ into a provable, self-auditing sustainability system.
11. CMID Lifecycle Management
Versioning Rules
| Change | Version Change |
|---|---|
| Metadata clarifications | PATCH (v1.0 → v1.1) |
| Additional variants | MINOR (v1 → v1.1) |
| Breaking definition change | MAJOR (v1 → v2) |
⸻
12. End-to-End Flow (Technical)
Docusaurus Policy → CMID → ZAR
↓
SSSR Signal
↓
FOGE Field Generation
↓
ZARA + ZAAM Assistants
↓
Validation (DICE/DaVE)
↓
Assurance & Verifier Workflow
↓
XBRL/iXBRL Export
↓
ALTD Audit Logging
⸻
13. Summary
Introducing CMIDs enables:
- Searchable, structured policy-metric linkage
- Auditor/verifier deep linking
- Automated consistency across the entire ZAYAZ ecosystem
- Policy interoperability with regulatory frameworks
- Accurate XBRL generation
- Smarter agent behavior (ZARA, ZAAM)
- Full lifecycle traceability in ALTD
CMIDs are now a core layer in the Shared Intelligence Stack (SIS) and ZAR framework.
⸻