Skip to main content

CMID

Canonical Metric Identifier System (CMID)

A Unified Tagging, Discovery, and Assurance Layer for Policies, Metrics, and Evidence


1. Purpose & Scope

The Canonical Metric Identifier System (CMID) is the universal standard for labeling, indexing, referencing, and verifying sustainability metrics across:

  • Policies
  • Procedures
  • Forms (FOGE)
  • Signals (SSSR)
  • Micro-Engines (MICE)
  • Reports & XBRL mappings
  • Agent workflows (ZARA, ZAAM)
  • Audit & evidence systems (ALTD, DAL, Assurance Cloud)

CMIDs ensure that every reference to a metric — in policy text, regulatory mappings, form fields, signals, or narrative sections — is traceable to a single authoritative definition.

CMIDs solve 4 systemic problems:

ProblemSolved By.
Inconsistent metric definitions across departments & policiesCMID → unified version in SSSR/ZAR
Hard for verifiers/auditors to locate a metric in ZAYAZCMID → deep link routing
Manual updates when ESRS/GRI/TCFD changesCMID → single point update
Lack of machine-readable tagging in documentationCMID → Docusaurus → SSSR → ZAR pipeline

CMIDs are the backbone enabling full automation, advanced search, and policy–metric interoperability.

2. CMID Structure & Naming Convention

Here you go — the fully updated Chapter 2 and Chapter 10 sections for the CMID specification, rewritten to match:

  • the new canonical auto-generation rule
  • the SSSR-integrated CMID model
  • the Ask ZARA audit-evidence hooks
  • the Search Index 2.0 ingestion logic
  • the ZAYAZ Assurance Pipeline (COSE → RIF → AAE)

These can be pasted directly into your MDX chapter, replacing the earlier versions.

2. CMID Generation Model (Final Version)

2.1 Purpose

The Canonical Metric Identifier System (CMID) provides a stable, global, immutable identity for every measurable unit used inside the ZAYAZ Platform. CMIDs allow:

  • unambiguous identification of metrics across all modules
  • cross-engine coordination (COSE → FIRM → REFS → AAE → RIF)
  • federated metric verification for auditors, authorities, and automated agents
  • machine-resolution of metrics during inference, simulation, or validation

Every CMID is globally unique, deterministic, and computationally generated.

2.2 Relationship to the Smart Searchable Signal Registry (SSSR)

The SSSR is the authoritative source of metrics inside ZAYAZ.

Each row in the SSSR corresponds to:

  • a single semantic metric
  • a single data signal
  • a single CMID, automatically derived from its registry position

This ensures the entire platform uses the same canonical metric identity for:

  • emissions factors
  • governance indicators
  • supply chain metrics
  • risk thresholds
  • policy fields
  • micro-engine outputs
  • AI-generated enriched metrics

2.3 Canonical CMID Format

The CMID follows this strict schema:

CMID-ZARA-{ID padded to 5 digits}

Example mappings:

internal idsignal_idCMID.
1sssr:countries.iso_cc_idCMID-ZARA-00001
2sssr:countries.iso_3166_1_alpha_3CMID-ZARA-00002
14sssr:energy.electricity.mwhCMID-ZARA-00014
432sssr:scope3.category1.upstreamCMID-ZARA-00432

This creates a one-to-one, deterministic mapping:

CMID = canonical identity
SSSR row = canonical source of truth

2.4 Automated CMID Generation in SSSR

CMIDs are generated and stored in Postgres: ´´´sql ALTER TABLE signal_registry ADD COLUMN cmid TEXT GENERATED ALWAYS AS ( 'CMID-ZARA-' || LPAD(id::text, 5, '0') ) STORED;


This ensures:
- no manual assignment
- no drift
- no missing CMIDs
- instant availability for search
- guaranteed uniqueness

CMIDs become first-class members of:
- verification workflows
- RIF risk processes
- COSE anomaly detection
- AAE reasoning traces
- ZARA query resolution
- TLX/PAL provenance chains



### 2.5 CMIDs in Policy Templates

Policy templates do not generate CMIDs.

They declare relationships to CMIDs via:
```yaml
cmids:
- CMID-ZARA-00001
- CMID-ZARA-00014

This model is intentional:

  • metrics are anchored in SSSR
  • policies reference metrics
  • reasoning (AAE) and auditing (COSE/RIF) become deterministic

Chapter 2 Summary

  • CMIDs are derived, not authored.
  • SSSR is the single authoritative source.
  • The entire platform synchronizes metric identity through CMID.
  • Policies, engines, dashboards, verifiers, and AI agents all use CMIDs for consistency.

3. CMID Schema (ZAR Artifact Format)

Stored in the ZAR Canonical Identifier Architecture.

{
"cmid": "CMID.GHG.TOTAL.REDUCTION_PCT.v1",
"title": "Percentage Reduction in Total Greenhouse Gas Emissions",
"description": "Measures percentage reduction of combined Scope 1, 2, and 3 emissions relative to baseline year.",
"domains": ["ESG", "Climate", "GHG"],
"signal_ids": ["SIG.GHG.TOTAL", "SIG.GHG.BASELINE"],
"sssr_mapping": "SSSR.GHG.TOTAL.REDUCTION_PCT",
"xbrl_concepts": ["ESRS_E1.EmissionsReductionPercentage"],
"micro_engines": ["MEID_CALC02_v1", "MEID_VALI04_v1"],
"evidence_requirements": [
"baseline_inventory",
"current_inventory",
"methodology_document",
"verifier_statement"
],
"version": 1,
"status": "active"
}

4. SSSR Integration

The SSSR (Smart Searchable Signal Registry) stores metadata for every signal. CMID becomes a required column.

4.1. Updated SSSR Schema

{
"signal_id": "SIG.GHG.TOTAL.REDUCTION_PCT",
"name": "GHG Reduction Percentage (Scope 1+2+3)",
"type": "numeric_percentage",
"frameworks": ["CSRD", "ESRS", "GRI"],
"cmid": "CMID.GHG.TOTAL.REDUCTION_PCT.v1",
"tags": ["policy-linked", "climate", "critical", "assurable"],
"dependencies": ["SIG.GHG.TOTAL.CURRENT", "SIG.GHG.TOTAL.BASELINE"],
"valuation_engine": "MEID_CALC02_v1",
"validation_engine": "MEID_VALI04_v1"
}

4.2. Requirements

  • Every SSSR signal MUST map to a CMID.
  • Metrics without CMIDs CANNOT appear in policies.
  • The SSSR → CMID link is used by:
    • ZARA reasoning engine
    • ZAAM assistants (Form Diagnostic, Verifier Concierge, Compliance Scout)
    • XBRL/iXBRL export
    • ALTD audit trails
    • SEEL stakeholder mapping

5. ZAR Integration (Canonical Identifier Architecture)

ZAR stores authoritative metric definitions. SSSR stores operational signal mappings.

5.1. Binding Logic

ZAR.cmid → SSSR.signal.cmid → FOGE.field.cmid → ALTD.entry.cmid

This provides complete metric lineage across the platform.

5.2. ZAR → SSSR Sync Rules

  • If ZAR updates a CMID version → SSSR auto-updates.
  • Deprecations follow CMCB schema rules.
  • CMID versioning follows semantic versioning:
    • v1 → first stable definition
    • v1.1 → minor metadata adjustment
    • v2 → breaking change from ESRS/GRI updates

6. FOGE / Form Generator Integration

FOGE needs CMIDs to bind form fields to canonical metric logic.

6.1. Field Schema

{
"field_id": "FIELD.GHG.TOTAL.REDUCTION_PCT",
"label": "GHG Total Reduction (%)",
"cmid": "CMID.GHG.TOTAL.REDUCTION_PCT.v1",
"signal_id": "SIG.GHG.TOTAL.REDUCTION_PCT",
"required": true,
"micro_engine": "MEID_CALC02_v1"
}

6.2. Dynamic Behavior

  • Form hints come from ZARA.
  • Field-level help comes from ZAAM.
  • Validation comes from DICE/DaVE.
  • Assurance comes from VTE → Verifier workflows.

7. Integration With ZARA & ZAAM

ZARA uses CMIDs as reasoning anchors.

7.1. Example

Prompt:

“What’s missing from our Scope 3 disclosures?”

ZARA resolves:

CMID.GHG.SCOPE3.TOTAL.v1
↳ SSSR.GHG.S3.CATEGORIES (all 15 categories)
↳ Missing: SIG.GHG.S3.CAT4, SIG.GHG.S3.CAT9

7.2. ZAAM Agents

  • Form Diagnostic Agent → preloads CMID → SSSR → help text
  • Verifier Concierge → deep-links to CMIDs for each disclosure
  • EcoWorld Academy Mentor → teaches the metric based on CMID

8 XBRL/iXBRL Binding

8.1. Mapping Table

{
"cmid": "CMID.GHG.TOTAL.REDUCTION_PCT.v1",
"xbrl_reference": {
"taxonomy": "EFRAG ESRS",
"concept": "ESRS_E1.EmissionsReductionPercentage",
"datatype": "xbrl:percentItemType",
"period_type": "duration"
}
}

8.2. Workflow

  1. Exporter reads CMID
  2. Maps to XBRL concept
  3. Checks SSSR signal values
  4. Runs validation engines
  5. Produces ESEF/iXBRL-ready file

9 ALTD Audit Trail Integration

Every metric-related action must store CMID.

9.1. Audit Log Example

{
"event": "metric_update",
"cmid": "CMID.GHG.TOTAL.REDUCTION_PCT.v1",
"signal_id": "SIG.GHG.TOTAL.REDUCTION_PCT",
"user_id": "usr-eco196xxx-0000023",
"timestamp": "2025-03-04T12:41:00Z",
"old_value": "12%",
"new_value": "14%",
"evidence_reference": "ECO-ATTACHMENT-12321"
}

10. Docusaurus Integration

10.1. CMID Badge Component

Create a component: /src/components/CMIDBadge.js

import * as React from 'react';

export default function CMIDBadge({ cmid }: { cmid: string }) {
return (
<span
style={{
padding: '4px 8px',
backgroundColor: 'var(--zyz-color-brand-tint, #E0F2FF)',
borderRadius: '6px',
fontSize: '0.8rem',
color: 'var(--zyz-color-brand-strong, #0369A1)',
border: '1px solid var(--zyz-color-border-subtle)',
marginLeft: '0.25rem',
}}
>
{cmid}
</span>
);
}

Expose it in MDXComponents.js:

import CMIDBadge from '@site/src/components/CMIDBadge';

export default {
...OriginalMDXComponents,
CMIDBadge,
};

You can now use:

<CMIDBadge cmid="CMID-ZARA-00001" />

10. CMIDs in the ZAYAZ Verification, Assurance & Evidence Pipeline

The CMID is the universal reference key that binds together:

  • metric definitions
  • policy fields
  • calculation engines
  • telemetry signals
  • evidence sources
  • auditor workflows
  • AI reasoning traces
  • lineage and provenance logs

This section describes how CMIDs propagate through the ZAYAZ Governance Stack.

10.0. CMID Badge Component

Create a component: /src/components/CMIDBadge.js

import * as React from 'react';

export default function CMIDBadge({ cmid }: { cmid: string }) {
return (
<span
style={{
padding: '4px 8px',
backgroundColor: 'var(--zyz-color-brand-tint, #E0F2FF)',
borderRadius: '6px',
fontSize: '0.8rem',
color: 'var(--zyz-color-brand-strong, #0369A1)',
border: '1px solid var(--zyz-color-border-subtle)',
marginLeft: '0.25rem',
}}
>
{cmid}
</span>
);
}

Expose it in MDXComponents.js:

import CMIDBadge from '@site/src/components/CMIDBadge';

export default {
...OriginalMDXComponents,
CMIDBadge,
};

We can now use:

<CMIDBadge cmid="CMID-ZARA-00001" />

Next to all metrics in the policies. Just link it to the right metric. ⸻

10.1 CMID → Evidence Linking

Every CMID automatically synthesizes:

10.1.1 Ask ZARA Audit View

A dedicated audit context:

/ask?cmid=CMID-ZARA-00014&mode=audit

This enables:

  • auditor-focused responses
  • deterministic grounding
  • stricter hallucination controls
  • traceable evidence pathways
  • reference to all policies and calculations involving that CMID

Access is wrapped in:

<AudienceBlock audience={['external-auditor','external-verifier','external-authority']}>
<AuditEvidenceLink cmid="CMID-ZARA-00014" />
</AudienceBlock>

Only authorized audiences see the link.

10.2 CMIDs in Search Indexing

The indexer injects CMIDs into semantic search metadata.

Example search document:

{
"id": "doc:/policies/env/climate-change#metrics",
"slug": "/policies/env/climate-change",
"title": "Climate Change Policy",
"heading": "Metrics",
"content": "...",
"metadata": {
"hub": "policies",
"module": "env",
"cmid": ["CMID-ZARA-00001", "CMID-ZARA-00014"]
}
}

This enables ZARA to answer:

  • “Which documents define CMID-ZARA-00432?”
  • “Which policies reference CMID-ZARA-00114?”
  • “Show me all evidence related to CMID-ZARA-00058.”

10.3 CMIDs in COSE (Compliance Surveillance Engine)

COSE uses CMIDs to:

  • align anomaly detection with metric semantics
  • identify regulatory thresholds linked to specific signals
  • consolidate evidence trails from multiple sources
  • power cross-framework compliance mapping (CSRD ↔ ESRS ↔ IPCC ↔ ISO)

CMIDs provide the anchoring identity that ensures the correct regulatory rule is applied to the correct metric.

10.4 CMIDs in RIF (Risk Intelligence Framework)

RIF uses CMIDs as dimension keys for:

  • dynamic risk filters
  • threshold retrieval
  • sector-adjusted baselines
  • overconfidence index detection
  • fraud/irregularity signals
  • probability-based noncompliance scoring

This transforms CMIDs into a risk-aware ontology entry.

10.5 CMIDs in AAE (Autonomous Assurance Engine)

AAE uses CMIDs to:

  • fetch metric definitions
  • build assurance chains
  • provide step-by-step reasoning
  • explain extrapolation or simulation behavior
  • verify consistency between calculators and policy expectations
  • produce transparent validation narratives for auditors

Every reasoning trace is anchored by CMID.

10.6 CMIDs in Lineage, Provenance & TLX → PAL

CMIDs feed directly into:

  • TLX (Transparency Ledger Exchange)
  • PAL (Planetary Assurance Ledger)
  • DAL (Digital Assurance Ledger)

This ensures traceability:

  • from input → calculation → evidence → reporting → verification → blockchain proof

A CMID-based lineage model is:

Input Source → Metric Signal → Calculation → Assurance → Disclosure → Ledger

Each hop is cryptographically resolvable.

Chapter 10 Summary

CMIDs are the connective tissue of the entire assurance ecosystem:

LayerRole of CMID
SSSRcanonical metric identity
Policiessemantic link to regulatory expectations
Enginesconsistent computation across modules
COSEcompliance anomaly mapping
RIFrisk filters & sector adjustments
AAEtransparent reasoning & verification
TLX/PALend-to-end traceability & auditability

CMIDs turn ZAYAZ into a provable, self-auditing sustainability system.

11. CMID Lifecycle Management

Versioning Rules

ChangeVersion Change
Metadata clarificationsPATCH (v1.0 → v1.1)
Additional variantsMINOR (v1 → v1.1)
Breaking definition changeMAJOR (v1 → v2)

12. End-to-End Flow (Technical)

Docusaurus Policy → CMID → ZAR

SSSR Signal

FOGE Field Generation

ZARA + ZAAM Assistants

Validation (DICE/DaVE)

Assurance & Verifier Workflow

XBRL/iXBRL Export

ALTD Audit Logging

13. Summary

Introducing CMIDs enables:

  • Searchable, structured policy-metric linkage
  • Auditor/verifier deep linking
  • Automated consistency across the entire ZAYAZ ecosystem
  • Policy interoperability with regulatory frameworks
  • Accurate XBRL generation
  • Smarter agent behavior (ZARA, ZAAM)
  • Full lifecycle traceability in ALTD

CMIDs are now a core layer in the Shared Intelligence Stack (SIS) and ZAR framework.

GitHub RepoRequest for Change (RFC)